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Summary. A new method for the calculation of partial cross sections in the 
time-dependent quantum theory of molecular reactive scattering processes is 
discussed. Preliminary calculations are presented which clearly illustrate the 
power of the method. They show how all the partial cross sections associated 
with a single initial quantum state may be computed over a very wide energy 
range from a single propagation of a prepared wavepacket. The resonance 
behaviour is obtained without difficulty and the energies of the reactive scattering 
resonances are exactly reproduced. 
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I. Introduction 

Time-dependent quantum dynamics has now been used for a number of years to 
calculate photodissociation cross sections [1-9] and the other observable at- 
tributes of molecular photodissociation processes. These observables include in 
particular the final quantum state distributions of the molecular photofragments 
of the breakup process and the emission spectrum of the molecule during 
dissociation (the resonance Raman spectrum) [10]. A break-through in the 
application of time-dependent quantum dynamical techniques to molecular 
dynamics and collision processes was made in the work of Kosloff [ 11-14]. He 
showed how the fast Fourier transform technique could be used to efficiently 
compute the derivatives of the wavefunction needed in the application of the 
kinetic energy operator. He, and others before him, have also discussed 
[7, 14, 15] how the essential step in performing time-dependent quantum dynam- 
ical calculations is the action of the hamiltonian operator on a well-specified 
wavefunction. If  this elementary step can be achieved, then the time-dependent 
Schr6dinger equation can be successfully solved. 

The difficult part of acting with the hamiltonian operator on a wavefunction 
is associated with the derivative operators in the kinetic energy part of the 
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hamiltonian operator. The kinetic energy operator is nonlocal in the coordinate 
representation or Schr6dinger picture, but is local in the momentum representa- 
tion [16]. Kosloff's methods utilise the convenience of the momentum representa- 
tion for the evaluation of the kinetic energy operator. The Fourier transforms 
which are performed are in effect transforming the wavefunction to the momen- 
tum representation and back again. In previous work [9, 10] the authors have 
applied time-dependent quantum dynamical techniques to molecular photodisso- 
ciation processes. As part of this research they have developed a new method for 
analysing the time-dependent wavepacket [9] and for extracting from it the 
probabilities for the formation of specific quantum states of the molecular 
photofragments produced. The method has several advantages, but foremost 
amongst them is that the analysis automatically yields the cross sections of 
interest, as a function of energy, over a very wide energy range. Another paper 
[17] discusses how this method may be applied to reactive scattering problems, 
but does not present any numerical results. 

In the present work we present our first numerical attempts at applying the 
theory to a collinear reactive scattering problem. We demonstrate clearly that the 
method is capable of yielding the reaction probabilities for the production of 
different product quantum states over large ranges of the collision energy from 
the propagation of a single wavepacket. The marked resonance behaviour which 
has been computed for the system [18] is shown to be correctly reproduced in 
our calculations, though some technical problems still remain to be solved as is 
discussed in detail below. The time-dependent quantum mechanical treatment of 
reactive scattering processes has recently been extensively used to treat the 
H + H2 and F + H 2 systems by Neuhauser et al. [19, 20]. Their methods are, 
however, different from those advocated here and do not yield the cross sections 
over the whole Fange of energies in as direct a manner. 

2. Theory 

In this paper we use the reaction: 

F + H2(v) ~ HF(v') + U (1) 

with all the atoms restricted to lie on a straight line as a model reactive system 
to illustrate the use of time-dependent quantum dynamical techniques. The 
potential is taken to be Muckerman's [21] potential number 5, which is the same 
as that used by Schatz et al. [18]. Jacobi coordinates are used as the kinetic 
energy operator then possesses no cross terms [22]. With these coordinates the 
central problem of reactive scattering theory must be faced, namely that there are 
different coordinates for reactant and product arrangements, and that if, for 
instance, we use the Jacobi coordinates corresponding to the reactant arrange- 
ment then the product quantum state analysis is complicated by the need to 
transform the wavefunction into the product arrangement coordinates before- 
hand. In order to avoid this difficulty we use the product arrangement Jacobi 
coordinates throughout to perform the time propagation of the wavepacket. This 
in turn of course introduces some difficulty in setting up the initial wavepacket, 
which must first be defined in terms of the reactant Jacobi coordinates and then 
transformed into the product coordinates. 

The initial wavepacket is created by first using the Fourier Grid Hamiltonian 
(FGH) method [23] to compute a grid representation of the desired H 2 vibra- 
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tional wavefunction ~bv(RH_H). This is then multiplied by a Gaussian function in 
the Rv-H2 coordinate (exp[-e(Rv H2--R°-n~)2])" Finally the product of these 
two functions is multiplied by an incoming travelling wave in the RF_H: coordi- 
nate. Combining all of these elements we may write the initial wavepacket as: 

q~(RF H2, RH_H, t = 0) = exp[ -- ik(Rv_ri: - R ° H2)] 

• exp[ --e(RF H2 -- R°-R2)2]q~v(RH H) (2) 

In order to gain information as to the incident relative flux of 
molecules, which is needed to calculate the cross section or reaction probability, 
the initial wavepacket must be Fourier-transformed: 

1 e -  ~ko R~(R,  r, t = O) d R  (3) f(kv)c~v(r) = ~ =0 

where the notation has been simplified by using R = RF n2 and r = RH_H. The 
inverse Fourier transform, which gives back a representation of the initial 
wavepacket is: 

I ' - ~  7 

¢ ( R , r ,  t=0 )=Xl f f (k~ )e i~oRdkv l¢~ ( r )  (4) 

We see therefore that the amplitude or weight associated with that part of the 
wavepacket which has energy E =h2k~ /2p  +e~ and which corresponds to the 
mutual approach of the two collision partners is f (  Ik~ I). 

Starting with the initial wavepacket given in Eq. (2), we first transform it to 
the product Jacobi coordinates and then solve the time-dependent SchrSdinger 
equation by propagating in discrete time intervals [11-14]. The final product 
state asymptotic analysis may then be performed directly in these coordinates. 
The wavepacket is propagated forward in time in small time steps (each of about 
8.2 a.u. (or 0.20 femto sees)). After each time interval the wavepacket is evalu- 
ated along a cut perpendicular to the exit valley and lying in the asymptotic 
region at RH_HF =RH_HF,m. The coefficients, Cv,(RH_HF, m , t), required for the 
final state product vibrational analysis of the wavepacket are then obtained in 
exactly the same manner as those used in the calculation of partial photofrag- 
mentation cross sections. 

Cv'(RH I-IF,D; t) = ~v,(RH F)~(RH_HF, m; RH_F; t) dRH_ F (5) 

The product vibrational wavefunctions, qS~,(RH_v), are generated on a linear 
grid using the FGH method [23], and the integral in Eq. (5) is computed using 
the formula: 

Nr 
Cv,(Ri_i~HF,m; t) = ARH_ F E ~gv,i~J,i(t) (6) 

i=1 

where ARH_F is the spacing between grid points in the "Rn_v" coordinate, ~bve is 
the value of the vth asymptotic vibrational wavefunction on the ith grid point 
(calculated by the FGH method [23]) and ~j,i(t) is the value of the wavepacket 
on the J, ith grid point at time t, where the Jth column of the grid corresponds 
to the Rrl nv value chosen for the asymptotic analysis, RH_I-IV = Rn-Hv, m. The 
time-dependent coefficients C~,(Rn_Hv,m ; t) are now Fourier transformed to ex- 
tract the energy dependence of the scattered wavepacket [9]: 

1 eiEt/~C~'(RH Hv,m; t) dt (7) Av,(Rn_HF, m ; E) = ~ = 0 
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The analysis of our previous paper [9] shows that the Av, coefficients may be 
written as: 

[ .' 11/ I 
Av,(RH HF,o~; E) = h . kh22rckv,] 2i e~k°'RH-"F'® 

X <1~ ~7 (R H HF,oo, RH-HF; E) [~(RH HV, RH-V; t = 0)> (8) 

The scattering wavefunctions ~ ~: occur in the equation as these are the ones 
which correspond at large times to definite well characterised outgoing plane 
waves and are the appropriate time-independent functions for the analysis of the 
long time behaviour of a wavepacket [9, 24]. 

The asymptotic behaviour of the time-independent scattering wavefunction 
0;7 may be written as: 

V k ql/2 ) [ 11/=I e~o,R,¢¢(r,)_ ~'~fJ e-"kY'R'#)f(r ') 
O 2 ( R , r , E )  . . .F~o~' kh=2zk~,J 2i ~ S e  (9!) 

[ . ,  po, 
O~(R,r,E) ' - I _ ~ A  2 i ~  S*' e-'~'Rdp,(r) (9b) 

where we have now simplified the notation so that R ' =  RH_H F and r ' =  RH_ F. 
Equation (ga) gives the behaviour of the wavefunction in the asymptotic part of 
the product exit channel, while Eq. (gb) gives its behaviour in the entrance or 
reactant channel. 

The initial wavepacket, ~(R, r, t = 0), must be situated entirely in the 
entrance channel such that its overlap with all the product vibrational wave- 
functions is zero. This means that the integrand in the overlap integral, 
<O~;(R, r, E)[~(R, r, t = 0)>, in Eq. (8) is non-zero only in the asymptotic part 
of the reactant entrance channel and the integral therefore selects out that part 
of ff~; given in Eq. (9b). If we now substitute Eq. (9b) into the integral in Eq. 
(8) and utilise the orthonormality of the reactant vibrational wavefunctions ¢i (r) 
we obtain: 

h [#tl~ikv,R,ooo, [kv__~, ] I/2 

{L f: } × e-ikvRev(Rn_H)ffP(R , r, t = O) dR dr (10) 
=0 0 

Note that only ev(RH_H) appears in Eq. (10) because we have already taken 
account of the fact that this is the only vibrational wavefunction contributing to 
the initial wavepacket. Using Eq. (3) the integral in this equation may now be 
replaced to yield: 

/2' [ 1 ] 1/2 
&,(R=, E )  = - -  [k, 11) 8r~h- -~'~ k ~ ,  f (  l) ( 

This equation enables us to determine the all important scattering S matrix 
from a knowledge of the coefficients A~,. In the present collinear reactive 
scattering case we are interested in calculating reaction probabilities, Po,v,, to 
compare with the exact time-independent calculations of Schatz et al. [9]. 
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These are given by the square of the S matrix elements: 

% , = l s o o l  2 

6492h 2 A v , ( R ~ o ] ) )  2 

- ~ kv.k, f ( k v  (12) 

3. Results and discussion 

Figure 1 shows contours of the absolute value of the initial wavepacket (t = 0) 
superimposed on contours of the potential energy surface. The figure also shows 
the analysis line in the HF 4- H exit valley (i.e. Rn-nv = Rn-Hv,oo) along which the 
wavepacket is analysed at each time step. Figure 2 shows the wavepacket after it 
has been propagated for 14.5 femto sees (600 a.u.). It is just entering the interac- 
tion region. Figure 3 shows the wavepacket after 58 femto sees (2400 a.u.) and we 
see that an interesting nodal structure has developed in the interaction region. This 
is the signature of the strong v' = 2 and v' = 3 resonances which dominate the 
reactive scattering of this model system [ 18]. While Fig. 4 shows the wavepacket 
at an even later time when most of it has left the interaction region. 

Figure 5 shows the time-dependent coefficients, Cv,(RHI_iV,oo; t), calculated 
using Eqs. (5) and (6) for final vibrational states v '=  2 and v '=  3, and Fig. 6 
shows the reaction probabilities [Eqs. (7) and (12)] calculated from them. An 
important point to note is that the final state specific reaction probabilities have 
been obtained in a very simple manner, from a single wavepacket propagation 
over a very wide kinetic (or total) energies. All the major features of the scattering 
are present, as may be confirmed by comparison with the exact time-independent 
calculations of Schatz et al. [18]. There is however something fundamentally 
unsatisfactory about the time-dependent coefficients shown in Fig. 5. This is that 
they do not fall off to zero before the end of the finite time interval considered. 
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Fig. 1. Contour plot of the 
absolute value of the initial 
wavepacket (t = 0) superim- 
posed on a single contour of 
the potential energy surface. 
Also shown is the analysis 
line in the HF 4- H exit valley 
(i.e R H HF = RH HF, oo) along 
which the wavepacket is 
analysed at each time step 
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Fig. 2. Contour plot of the 
absolute value of the 
wavepacket at t = 600 a.u. 
( 14.5 femto secs). The 
wavepacket is just entering 
the interaction region 
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Fig. 3. Contour plot of the 
absolute value of the 
wavepacket at t = 2400 a.u. 
(58.0 femto secs). The 
wavepacket has entered the 
interaction region and the 
nodal structure of the reso- 
nance is clearly visible 

Besides the fact that this will lead to numerical problems (aliasing) and edge 
effects [25], it is o f  course physically incorrect. 

We see (Fig. 5) that at large times the coefficients have ceased to decay 
appreciably. We attribute this to edge effects arising from the manner in which 
we have carried out the wavepacket propagation. After each time step o f  the 
time propagation we "damp" the edges o f  the grid so that the wavepacket  
becomes zero just before it reaches the edge. This process should avoid the 
problem of  aliasing [25] (or false reflections) which would otherwise arise. In our 
previous photodissociation work [9, 10] this procedure worked well and did not  
give rise to any problems. As  we and others [26] have discovered, however,  an 
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Fig. 4. Contour plot of the 
absolute value of the 
wavepacket at t = 9000 a.u. 
(218 femto secs). The 
wavepacket has mainly left 
the interaction region and is 
proceeding down the exit 
valley 
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Fig. 5. The absolute 
values of the 
time-dependent 
coefficients 
Cv'(RH HF,m;  l )  

resulting from the 
asymptotic analysis of 
the wavepacket for 
v ' = 2  and v' = 3  

additional problem appears in reactive scattering theory. This is that the kinetic 
energies are smaller in this case and the associated wavelengths are longer. This 
means that if the damping at the edges of the grid is performed too abruptly (on 
a scale compared with the longest wavelength of importance) then some of the 
wavepacket will be (wrongly) reflected back from the damper at the edge of the 
grid. This appears unfortunately to be happening.in the present case. Our current 
research efforts are directed at overcoming this difficulty in as simple a numerical 
and conceptual manner as possible. 

Figure 7 shows a modified set of time-dependent coefficients, Cv,(RH_HF,oD; t), 
in which we have artificially damped down the long time tail of the coefficients 
(between 8000 and 16000 a.u.) so that they fall off to zero by the end of the time 
period considered. This procedure is analogous to windowing [25] which is often 
used in Fourier transform theory to reduce the consequences of edge effects. 
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Fig. 6. The 
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to produce final 
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as a function of energy; 

1.0see Eq. (12) 
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Fig. 7. The absolute 
values of the 
time-dependent 
coefficients 
C~,(R._.~,~; 0 
resulting from the 
asymptotic analysis of 
the wavepacket for 
v '=  2 and v '=  3. The 
long time tail of the 
coefficients has been 
multiplied by an 
exponential damping 
factor (compare with 
rig. 5) 

Figure 8 shows the reaction probabilities for producing final vibrational quan- 
tum states v' = 2 and v' = 3 from H2(v -- 0) over the range o f  energies covered 
by our wavepacket. We have confirmed that the exact details o f  the way in 
which we damp the time-dependent coefficients do not have any significant 
effects on our results. These results compare very well with the exact time-inde- 
pendent quantum results o f  Schatz et al. [18]. All o f  the resonances are 
predicted to fall in exactly the correct places (present calculations: v' = 2  
resonance at 0 .289eV, v ' =  3 at 0.697 eV, Schatz et al. [18] obtain 0.288 and 
0.695 eV). There is however slightly more structure in our reaction probability 
plots than in the exact (time-independent) ones [18]. This is clearly a remnant 
of  the edge effects which have not been fully removed by our elementary 
windowing procedure. 
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4. Conclusions 

The paper has discussed the application of time-dependent quantum scattering 
techniques to molecular reactive scattering processes using a simple collinear 
system as a test case. The F + H 2 system used in fact presents a very serious test 
for time-dependent methods as it displays sharp (i.e. long-lived) resonances 
which are expected to be especially difficult to treat using time-dependent 
techniques. Our final results (see Fig. 8) agree very well with the exact time- 
independent quantum calculations [18]. They reproduce all the resonance be- 
haviour and are in good quantitative agreement with the previously reported 
reaction probabilities. They show slightly more structure in their energy depen- 
dence and as discussed in the text this is the result of a technical problem 
associated with the way in which we propagate the wavepacket and which is 
currently being addressed. 

Our calculations illustrate the application of our new method for analysing 
time-dependent quantum mechanical calculations [9] to reactive scattering prob- 
lems. They demonstrate, in a way which has not previously been done, the 
elegance and ease with which a single time-dependent wavepacket propagation 
can, i f  properly analysed, yield final quantum state specific cross sections over a 
very large range of  energies. 
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